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HEISENBERG APPROACH TO PHOTON EMISSION NEAR A PHASE CONJUGATOR
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Abstract

An expression for the emitted fluorescence radiation by an atom near a

phase conjugator is derived from a plane-wave expansion of the electric field

operator and Heisenberg's equation of motion for the annihilation operator.

The result is compared to a solution which was found previously, based on the

classical Maxwell equations. It is shown that both theories yield the same

expression for the field in the radiation zone, in the limit of a transparent

medium. This confirms the correctness of either approach to the problem of

optical phase conjugation nf atomic radiation.

PACS: 42.65.H, 32.80, 52.50.D, 42.50.Kb



I. INTRODUCTION

In a previous paper we have studied the behavior of an atom near the

surface of a four-wave mixing phase conjugator (PC). 'We calculated the

fluorescent photon emission rate by solving Maxwell's equations for a dipole

A near a PC. The electric field E(r,t) was interpreted as a quantum operator

field, with the argument that the classical Maxwell equations must be

identical in form to the (quantum) Heisenberg equations of motion for the

operator fields. Nevertheless, questions can be raised as to whether the

identification of Maxwell's equations with Heisenberg's equations can be

ustified for the problem under consideration. In particular, the pump beams

(with frequency w) for the four-wave mixing process are taken into account

parametrically, and are represented by classical plane waves. This leads to

factors of exp(-2iwt) in the expression for the fluorescence radiation field,

rather than a(t) 2 , with a(t) the annihilation operator for a photon in the

pump beam. In addition, our results are in conflict with the results of

Hendriks and Nienhuis, 2,3 who did not find the terms proportional to p(t)

(raising part) in the expression for the fluorescence field.

In this paper we solve the Heisenberg equation for the annihilation

operator ak.(t) for a photon with wave vector k and polarization a (either s -

surface polarized or p - plane polarized). The solution is applied to

evaluate the fluorescent radiation field int he far zone. These calculations

are completely independent from our previous method, and the results can be

used to verify the consistency of our approach.

II. ELECTRIC FIELD

The electric-field operator E(r,t) can be represented as a sum of

polarized plane waves. In the region z > 0 (above the PC, where the atom is),
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we have incident (inc) waves with wave vector k and polarization a. These

waves gives rise to specularly-reflected (r) waves, and to phase-conjugated

(pc) waves which travel in the direction of -k. In addition, there are

transmitted (t) waves which have their origin in waves which are incident on

the medium from the other side of the PC. The four-wave mixer produces also a

nonlinear (nl) wave in z > 0.

The amplitude of each of the generated waves is related to the amplitude

of the corresponding incident wave by a Fresnel coefficient. The electric

field is explicitly,

E(r,t) = ' Fak(te k - erik--- 2c V I k e ka e + Rkaek rae

t 2iwt * - ikpcEr]

+ at (t)e P e e -
ka Pkaekpa-P

kc 0

t -2iwtr
+at (t)e - k N*e - + H.c. (2.1)

where a prime (double prime) on the summation sign indicates a sum over waves

which propagate in the z < 0 (z > 0) direction only. The unit polarization

vectors ek a and the wave vectors k. are defined in Appendix A. The
-n -iHeisenberg operator aka(t) is the annihilation operator for a photon which



is incident on the PC, either from z > 0 or from the other side (back port) of

the medium. ;e shall take the Schrodinger picture and Heisenberg picture to

coincide at t - 0.

III. EQUATION OF MOTION

The only unknown in expression (2.1) for E(r,t) is the annihilation

operator a, (t) for t > 0. Its equation of motion is

d a-k (t) = a (t), HI (3.1)

with initial condition a ka(0) - a . The Hamiltonian H can be written as

H -H + H + H , (3.2)
a r ar

¢i th

H ) a, a.a (3.3)
r £ ra-a

ka

for the Hamiltonian of the radiation field, and where w - ck. The atomic

Hamiltonian H can remain unspecified because it commutes with a k(t). For

the interaction, we take

H ar - -. AE(h,0) , (3.4)
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in terms of the atomic dipole moment operator p and the position h - he of

the atom. With Eqs. (3.3) and (3.4) the equation of motion becomes

ix a.,(t) - w a,(t) -(t).(ak(t),E(h,t)] (3.5)

where E(h,t) follows from Eq. (2.1) with r - h.

17. SOLUTION

An integral of Ea. (3.5) is

a -e a d it' e (t') E(ht')]) (4.1)drka(t)[kaka (t)  e aka i E kO

When we subsitute Eq. (2.1) for E(h,t'), then it appears that many terms in

the integrand oscillate at optical frequencies, and these terms average out to

zero on a time scale of an optical cycle. The time dependence of the

annihilation operator would be akc (t) = akaexp(-iwt) in free evolution, which

contains only a single positive frequency. When the interaction is taken into

account, ak,(t) acquires a spectral width around the frequency w, but it is

still a positive-frequency operator. Similarly, when we split the dipole

moment into a positive and a negative frequency part as

A(t) - (t(+) + U(t) (4.2)

then p(t) (+  - 4 (+)exp(-i0 t) in free evolution (for a two-level atom with
0

transition frequency w ). The third time dependence enters as exp(±2iwt).

Then we drop all terms in the integrand which oscillate with optical



frequencies, and retain the terms which oscillate with the difference of two

optical frequencies. Furthermore, we notice that the first term on the right-

hand side of Eq. (4.1) yields the vacuum field E (r,t).

TIherefore, we can write

E(r,t) - E v(r,t) + E (r,t) (4.3)

where E (r,t) is given by Eq. (2.1) with aka(t) - akaexp (iwt). The source
field E (rt) follows from the second term on the right-hand side of Eq.

-_S -of

4.). We find explicitly,

ka

E (r ~ V k ~ k~e -r

22 V w e bka(t)Pka2k a e j
0 ka -pc

+ " e iWt b' t)T' ekeik'r
+ 2V a ka k - -

ka

ik -
S w e i(-2w)t bka(t)Na ekae -n + H.c. (4.4)
o ka- -

in terms of the operators

b, L) - dt' e iWt'e -ik.h * -ik -h

&a f- -ka + - -r



rt ik -h
+ J dt' et') .(P e, e ) k < 0

0- -Pc

(4.5)

t toi ikkhb °  (t) - fodt' e4) (t°)  .(T a eka e -

+ dt' e A(t') (Nk e e ) k > 0

(4.6)

ASYMPTOTIC EXPANSION

In order to simplify the solution (4.4) for E (r,t) we consider its

value in the radiation zone (r - c and z > 0). The operators bka(t) and

b' (t) are independent of r, so that all r-dependent factors appear in the

form exp(ik -r). These exponentials are multiplied by a function of k , and

the result is summed over all values of k . Therefore, all terms in Eq. (4.4)

have the generic form V - I  g(k )exp(ik .r). The summation runs either over

wave vectors with only positive z-components or over wave vectors with only

negative z-components. Changing the summation into an integration gives

Iik r ik -r
V g(k )e -Z I - - dk k 2  dn g(k )e - - (5.1)Vk -a 87r3 0 U a a- -

-a

where the superscript (±) on the region of solid angle indicates the sign of

the z-components of the wave vectors k . Then we can make an asymptotic
-at 4

expansion of the angular integral with the methed of statio,, y phase. The

result is



ikr k r

d g k . e zfr± k e

where e is the radial spherical unit vector which points in the observation-C

direction. This direction will be specified by the spherical angles 9 and €.

The asymptotic exDansion effectively filters out the value of g~k ) for k - +

k e corresponding to the plane wave exp(ik .r) which travels into the

observation direction.

w'ith Eqs. .5.1) and (5.2), the asymptotic expansion of Er , f :s found

-D be

Es(rt) - x dk ke -ikr e- t
87r ?e r L i -k--ke r

0 0r

ik rr - (wtf dkkr e (w e- k kt)Rkek a~k -k e
0 - -r r-r

+ { -dk c e ,, ei(u2w)tb, (t)P, e,
pc PC KU k(-K pc -k e0 - - c pc pc-r

iktr
dk k e (w eIWb (t)T'o ek) k  kSk a-ka t -r

- -t r

+ ;dk nik n e i k n 2r (we-i(w-2w) tb "t)
+ J( n e kat

et + H.c. (5.3)

- U -k ei "



.I. POLARIZATION VECTORS

The polarization Vectors e., evaluated for k - + k e can beK 7 -- 2 3- r

exoressed in the spherical unit vectors e and e_ These calculations are

-_nilar ,but not identical) to the corresponding calculations in Ref I (Sec.

:X'). Here it is convenient to introduce the notation

e -+e. , e -e, , (6.1)
-s -, -p -

.hich will enable us to express the results for s-waves and p-waves in a

.zn;e formula. W'e find

(r,t) - X / e a + e X + e X + e A
S2 a adva - r -a pc C -o ta

0 Ur

+eX I + H.c. (6.2)

-ni th

0dk kw e ikr- i:t (b (t)) (6.3)
"adva 0

ik r-iwt
- dk e (6.4)

ra 0 r kr wtRka -k e'- - -r r-r

aind similar expressions for X , X and X the term

roDortional to X is an advanced (non-causal) contribution to E
a adv, c -s

.:orresponding to incoming spherical waves. The other four terms are retarded

fcausal) solutions, and they have the form of outgoing spherical waves.
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Next we substitute expressions (4.5) and (4.6) for bk(t) and b' (t),
kcka

respectively, into the results for the X Is. Then we evaluate the

polarization vectors in b, (t) and b,' (t) at the indicated wave vectors.
KC Ka

After lengthy calculations we find

X - dk kR x reiW(t r/c) jdt' e it'

-iw(t+r-r/c) t' + (+)+ R e-f dr' e e ;I (t)

a 0
* i (C-r-r/c) I t i 2 ) '( )

and four other similar expressions. Here we introduced the abbreviations

+ +(6)

-e E = - 2sin~e (6.6)-s -4 -p -z 'z

h cos (6.7)
-cosC

and all Fresnel coefficients, like P I R , etc., are evaluated at frequency w
a a

and an angle of incidence equal to the polar angle (6) of observation.

VII. VO-LEVEL ATOM

So far we have not made any assumption about the atom and its dipole

moment u(t). In order to evaluate the expression for E (r,t) further, we

assume that only two atomic levels, which might be degenerate, are of
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relevance. The level separation is 0 . In free evolution, the positive and0

negative frequency part of p(t) obey the identity

() +iw o(t2 I ) it

(t 2 )) = e (tl (7.1)

We shall use this q3 an approximation in equations of the type (6.5). Then,

for instance, Eq. (6.5) can be written as

f dk kwR

+ -i(c-W )(t+r-r/c) t i(W-o)tj

* +R ((t -r r/ c  ) eit dt e

+P e- *iIwt---r/c)

X e -i~~ -2w)(t-r-r/c) ft dt' e 1~~ - wt (7.2)
00

In every term, both the exponential in the integrand and the exponential in

front of the integral have the same frequency. When the distance r is much

larger than a wavelength and the retardation r/c is much larger than an

optical cycle, then the integrals can be approximated by 
5

e J)(dt' ea - 2i 6(w). (7.3)

00

In eeryter, bth he xpoental n th inegrnd nd he xpoental NNE



In writing out all X a in Eq. (7.2), it can be shown that every

integral can be written as in Eq. (7.3). The only exception is Xadv,a which

contains the integral of Eq. (7.3) with r replaced by -r. This makes the

right-hand side zero, instead of 2x6(w ), as shown in Ref. 5. Therefore,

Xadva - 0 , (7.4)

as it should. Then we set k - w/c and carry out the integrations over w.

This gives, for instance,

S (tr +r/c) + IRI 2e+ '.(t+r-r/c) (+ )

c

+ 
P  o(t-rr/ 2i(t r/c) (7.5)

+ R -*ptrrc e i~--rc 75a a -a

where

P = P (o) , (7.6)

Pa - P a( 2w- 0) , (7.7)

and similarly for other Fresnel coefficients.

VIII. TOTAL SOURCE FIELD

The total field E (rt) has four contributions of the form (7 .5)

according to Eq. (6.2). We set t - r/c - t, and introduce the polarization

vectors (without the ± superscripts)
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e -e e4' "-e (8.1)

25 20-p -a

s -e ,4 -- e 2sinOe (8.2)
- -p -z

Then we define the parameters

a 12 + 2 2 - 2 (8.3)
- R + IT' I; (8.3)

i - - * -' ' 'N *

- K " R P R P +TN -T , (8.4)
a a aa a o a

which will depend on the angle a, in general. When we group together all

(+ (-) te h il sue h

terms with A(t) and all terms with u(t) ,then the field assumes the

remarkably simple form

- iw r
2 o(r0t + -2iwt- ()

{s_ a+ U(t) + e a a*L(t) } + H.c. , (8.5)-s2 -a -a~ a
-s -4ir c r

0 a

in terms of the polarization-like vectors

2iw r
+ a 0 (8.6)

a -- ye +e R

-a a-a a-a

a---*e + e 2iw r ' (8.7)

-a a a

Alternatively, we can group the terms as



-4

2 
o

w e
E -rt((q e)e + (.)e + H.c. (8.8)

-s - 4ffe c'r - ~

with

2iw ra (+) o (+)
4 -7p (t) + e Rp()

o2iw (-)

e-it(P*,(t) -e 0 - i (t) )(8.9)

2i~ rS a (+) o (+)
- 7S j.(t) - e Rs '(t)

-2iw(P* (t) + e 17sp (t) (8.10)

The mirror dipole ju' is defined as

£ '( t = £ ( t) £!l~ ) ,(8 .11 )

in terms of the perpendicular and parallel components of p(t) with respect to

the surface z - 0. Expressions (8.8) - (8.10) would be identical to our

a i

earlier results (12.5) - (12.7) from Ref.l, if the parameters 7a and i would
a a

be 7a - l and r1 - 0.
a a

IX. SPECIAL CASES

We have not used any of the properties of the Fresnel coefficients in

the derivation of the results of the previous section. These coefficients can
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be calculated explicitly,' but the result is very complicated. Therefore, we

consider two limiting cases of practical interest.

A. Dielectric Layer

When we turn off the pump beams, then the medium becomes an ordinary

dielectric. Therefore,

P -N -0 (9.1)

which gives

i

- 0 (9.2)

The non-zero Fresnel coefficients are related by

Ir 12  + IR 2  - 1 (9.3)

so that

a -l . (9.4)

This shows that for a dielectric layer, the results (8.8) - (8.10) are

identical to those in Ref.l. Notice that the term which is proportional to

A(t) ( ) in Eq. (8.5) disappears in this limit.



16

B. Transparent PC

When the dielectric constant equals unity, the specular waves vanish.

This gives

R - N -0 (9.5)
aa

The non-zero Fresnel coefficients are now related 
by 7

Iral2 Ie I2_ 1 , (9.6)

which holds for any polarization, angle of incidence and frequency.

Therefore, we find again

a _II 0 (9.7)
a a

X. CONCLUSION

We have derived an expression for the fluorescence radiation field which

is emitted by an atomic dipole near the surface of a PC. The starting point

was the standard plane-wave expansion of the electric field in terms of

annihilation and creation operators. Then we solved the Heisenberg equation

of motion for the annihilation operator. This gives rise to two contributions

to the electric field: the vacuum field E and the source field E, which is

generated by the dipole. The form of E follows trivially from the choice of-V

Hrf but the form of E depends on the choice of interaction Hamiltonian andt-S

the structure of E (which equals E(rO)). We have shown that E is identical
-tV th s t -S

to the solution of Maxwell's equations, as found previously, provided that
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a

7a Y or - 0 (10.1)

These parameters do not appear in the solution of Maxwell's equations, which

a
indicates that both approaches are independent indeed. The parameters a and

7- are determined by the Fresnel reflection and transmission coefficients for

a plane wave, and they depend on the polarization, frequency and angle of

incidence. The general form of the Fresnel coefficients is extremely

complicated, which prohibits the verification of Eq. (10.1) for the most

general case. We have shown, however, that for a dielectric laver and for a

transparent medium the relations in Eq. (10.1) are satisfied, which covers

most cases of practical interest.
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APPENDIX

Here we summarize the expressions for the various wave vectors in Eq.

(2.1) and the phase conventions for the unit polarization vectors. Any wave

can be decomposed as

S k,z -ze(A.)

and any k. in Eq. (2.1) which corresponds to a given incident wave must have
-i

the same parallel component kI with respect to the surface of the medium. The

polarization vectors for s-waves and p-waves are chosen as

I k(A.2)
!k S kl - e
. --

e 1 k xe (A.3)
2k ip k i -i -kis

respectively. An incident wave from z > 0, and with wave vector k - k 1 +

k e generates a specular (r) wave and a phase-conjugated (pc) wave. The z-

components of their wave vectors are determined by the dispersion relation,

and found to be

k - k , (A.4)
r,z z

pcZ 11

in terms of

P - (2w - )/ (A.6)
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A wave with wave vector k which is incident on the layer from z < 0, generates

a transmitted (t) wave in z > 0 with wave vector k. In addition, a nonlinear

(ni) wave is produced in z > 0, which has the same frequency shift with

respect to the incident wave as the pc-wave.
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